K2of Cyclic Group Rings over λ-Rings
نویسندگان
چکیده
منابع مشابه
COTORSION DIMENSIONS OVER GROUP RINGS
Let $Gamma$ be a group, $Gamma'$ a subgroup of $Gamma$ with finite index and $M$ be a $Gamma$-module. We show that $M$ is cotorsion if and only if it is cotorsion as a $Gamma'$-module. Using this result, we prove that the global cotorsion dimensions of rings $ZGamma$ and $ZGamma'$ are equal.
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملCyclic codes over finite rings
It is well known that cyclic linear codes of length n over a (finite) field F can be characterized in terms of the factors of the polynomial x"-1 in F[x]. This paper investigates cyclic linear codes over arbitrary (not necessarily commutative) finite tings and proves the above characterization to be true for a large class of such codes over these rings. (~) 1997 Elsevier Science B.V. All rights...
متن کاملCyclic Codes over Some Finite Rings
In this paper cyclic codes are established with respect to the Mannheim metric over some finite rings by using Gaussian integers and the decoding algorithm for these codes is given. AMS Classification: 94B05, 94B60
متن کاملCyclic codes over some special rings
In this paper we will study cyclic codes over some special rings: Fq[u]/(u ),Fq[u1, ..., ui]/(u 2 1, u 2 2, ..., u 2 i , u1u2 − u2u1, ..., ukuj − ujuk, ...), Fq[u, v]/ ( u, v , uv − vu ) , q = p, where p is a prime number, r ∈ N−{0} and Fq is a field with q elements.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1998
ISSN: 0021-8693
DOI: 10.1006/jabr.1997.7270